

Ansible for AWS
A simple way to provision and manage your Amazon
Cloud infrastructure

Yan Kurniawan

This book is for sale at http://leanpub.com/ansible-for-aws

This version was published on 2016-08-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2016 Yan Kurniawan

Tweet This Book!
Please help Yan Kurniawan by spreading the word about this book on Twitter!

The suggested hashtag for this book is #ansible4aws.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ansible4aws

to my wife - who never thought I would write a book

to my children - who are still learning to write

Contents

Preface . i
What this book covers . ii
Who this book is for . iii
What you need for this book . iii
Conventions . iii
Example Code Files . iv

Chapter 1: Getting Started with AWS . 1
What is Amazon Web Services (AWS)? . 1
Setting Up Your AWS Account . 7
AWS Management Console . 12
Create Your First EC2 Instance . 16
Connect to Your Instance . 26
Terminate Your Instance . 28

Chapter 2: Getting Started with Ansible . 30
What You’ll Need . 30
Installing Ansible . 31
SSH Keys . 32
Inventory . 33
Your First Commands . 38
Playbooks . 39
Your First Playbook . 45
Roles and Include Statements . 47

Chapter 6: VPC Provisioning with Ansible . 49
The Default VPC . 49
Getting Started with VPC . 51
VPC Provisioning . 62
VPC Security Groups . 67
EC2-VPC Provisioning . 73
NAT Instance . 75
Multi-AZ Deployment . 79
Ansible in VPC . 82

CONTENTS

OpenVPN Server . 88
Getting VPC and Subnet ID . 94

Preface
Since the CFEngine¹ project by Mark Burgess began in 1993, configuration management tools
have been revolutionizing IT operations. Followed by the emergence of Puppet² and Chef³, which
later gain more popularity, there are now many choices available to do IT automation. The new
generation of configurationmanagement tools can build servers in seconds and automate your entire
infrastructure.

Ansible⁴, first released in 2012, is one of the newer tools in the IT automation space.While other tools
like Puppet and Chef focused on completeness and configurability, Ansible focused on simplicity and
low learning curve, without sacrificing security and reliability.

Amazon Web Services (AWS) began offering IT infrastructure services to businesses in 2006, in the
form of web services – now commonly known as cloud computing. One of the key benefits of cloud
computing is the opportunity to replace up-front capital infrastructure expenses with low variable
costs that scale with your business.With the Cloud, businesses no longer need to plan for and procure
servers and other IT infrastructure weeks or months in advance. Instead, they can instantly spin up
hundreds or thousands of servers in minutes and deliver results faster.⁵

This book will show you how to use Ansible’s cloud modules to easily provision and manage AWS
resources including EC2, VPC, RDS, S3, ELB,Auto Scaling, IAM and Route 53. This book takes you
beyond the basics of Ansible, showing you real-world examples of AWS infrastructure automation
and management using Ansible, with detailed steps, complete codes, and screen captures from AWS
console.

The example projects will help you grasp the concepts quickly. From a single WordPress site, to a
highly available and scalable WordPress site, Ansible will help you automate all tasks.

¹https://cfengine.com
²https://puppetlabs.com
³http://www.getchef.com
⁴http://www.ansible.com
⁵http://aws.amazon.com/about-aws

Preface ii

What this book covers

You’ll find the following chapters in this book:

Chapter 1, Getting Started with AWS, shows you how to sign up for AWS (Amazon Web Services),
set up your account, get familiar with AWS console, create your first Amazon EC2 (Elastic Compute
Cloud) instance, and connect to your EC2 instance using SSH.

Chapter 2, Getting Started with Ansible, teaches you the basics of Ansible, how to build an inventory,
how to use modules, and create Ansible playbooks to manage your hosts.

Chapter 3, EC2 Provisioning and Configuration Management with Ansible, teaches you how to use
Ansible playbook to configure and launch EC2 instances, and use dynamic inventory to manage
EC2 instances.

Chapter 4, Project 1 - AWordPress Site gives you an example project to provision a simpleWordPress
site in AWS cloud.

Chapter 5, Route 53 Management with Ansible teaches you how to create and delete Domain Name
System (DNS) records in Amazon Route 53 DNS web service using Ansible.

Chapter 6, VPC Provisioning with Ansible, delves deeper into AWS cloud infrastructure and teaches
you how to use Ansible to create andmanage Virtual Private Cloud (VPC), VPC subnets, VPC routing
tables, and VPC Security Groups, also how to use Ansible to launch EC2 instances in VPC subnet
and attach VPC security groups to the instances.

Chapter 7, RDS Provisioning with Ansible, teaches you how to use Ansible to provision Amazon
Relational Database Service (RDS), replicate RDS database, take snapshot, and restore backup.

Chapter 8, S3 Management with Ansible, teaches you how to manage files in an Amazon Simple
Storage Service (S3) bucket using Ansible.

Chapter 9, Using AWS CLI with Ansible shows you how to use AWS CLI to extend Ansible
functionality in AWS environment.

Chapter 10, Project 2 - A Multi-Tier WordPress Site, an example project to build a highly available
and scalable WordPress site.

Chapter 11, Amazon Machine Images (AMI), teaches you how to create AMI from an EC2 instance.

Chapter 12, Auto Scaling and Elastic Load Balancing (ELB), introduces you to Elastic Load Balancing
and Auto Scaling.

Chapter 13, ELB and Auto Scaling with Ansible, teaches you how to use Ansible to provision ELB
and Auto Scaling Groups.

Chapter 14, Identity and Access Management (IAM), shows you how to use Ansible to manage IAM
users, groups, roles and keys.

Preface iii

Who this book is for

The book assumes that the reader has a little experience of Linux systems administration, including
familiarity with the command line, file system, and text editing. It is expected that the reader has
basic knowledge of Amazon Web Services and a little experience of Ansible usage.

What you need for this book

To run the examples in this book, you will need a computer with Linux operating system and an
Internet connection. To use the services in Amazon Web Services, you will need to setup an account
and register your credit card with Amazon.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follow: “We can include other contexts through the use of the
include directive.”

A block of code is set as follows:

1 [group]

2 host1

3 host2

4 host3

Any command-line input is written as follows:

$ ansible-playbook -i hosts site.yml

This is an information box
Special information appear in a box like this

This is a warning box
Warnings appear in a box like this

Tips and tricks
Tips and tricks appear like this

Preface iv

Example Code Files

You can find the example code files for this book in the Ansible for AWS GitHub repository⁶.

⁶https://github.com/yankurniawan/ansible-for-aws

Chapter 1: Getting Started with AWS
This chapter will give you introduction to Amazon Web Services (AWS), show you how to set up
your AWS account, create your first EC2 instance, and connect to your EC2 instance using SSH. You
can skip this chapter if you already have an AWS account and experience with EC2 instance.

What is Amazon Web Services (AWS)?

Amazon Web Services (AWS) provides computing resources and services that you can use to build
applications within minutes at pay-as-you-go pricing. For example, you can rent a server on AWS
that you can connect to, configure, secure, and run just as youwould a physical server. The difference
is the virtual server runs on top of a planet-scale network managed by AWS.

You pay for your virtual server only while it runs, with no up-front purchase costs or ongoing
maintenance costs. Backed by the AWS network, your virtual server can do things no physical server
can, such as automatically scaling into multiple servers when demand for your application increases.

Using AWS to build your Internet application is like purchasing electricity from a power company
instead of running your own generator, and it provides many of the same benefits: capacity exactly
matches your need, you pay only for what you use, economies of scale result in lower costs, and the
service is provided by a vendor experienced in running large-scale networks. In addition, AWS can
offer significant cost savings, up to 80%, compared to the equivalent on-premises deployments.

You can run nearly anything on AWS that you would run on physical hardware: websites,
applications, databases, mobile apps, email campaigns, distributed data analysis, media storage, and
private networks. The services we provide are designed to work together so that you can build
complete solutions. There are currently dozens of services, with more being added each year.⁷

The following diagram shows the categories of functionality offered by AWS.

⁷Getting Started with AWS

Chapter 1: Getting Started with AWS 2

AWS Functionality

In each category, there are one or more services. For example, AWS offers five database services, each
one optimized for a certain type of use. With so many offerings, you can design an AWS solution
that is tailored to your needs.

Amazon has produced a set of short videos to help you understand AWS basics:

• What is Cloud Computing⁸
• What is Amazon Web Services⁹

In this book we will only use following AWS services from Foundation Services category:

• EC2 (Elastic Compute Cloud)
• VPC (Virtual Private Cloud)
• RDS (Relational Database Service)
• S3 (Simple Storage Service)
• ELB (Elastic Load Balancing)
• Auto Scaling
• Route 53

⁸http://youtu.be/jOhbTAU4OPI
⁹http://youtu.be/mZ5H8sn_2ZI

Chapter 1: Getting Started with AWS 3

EC2 (Elastic Compute Cloud)

EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides
resizable compute capacity in the cloud. It is designed to make web-scale
computing easier for developers.

Amazon EC2’s simple web service interface allows you to obtain and configure
capacity with minimal friction. It provides you with complete control of your
computing resources and lets you run on Amazon’s proven computing environ-
ment. Amazon EC2 reduces the time required to obtain and boot new server

instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing
requirements change. Amazon EC2 changes the economics of computing by allowing you to pay
only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure
resilient applications and isolate themselves from common failure scenarios.¹⁰

VPC (Virtual Private Cloud)

VPC

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically
isolated section of the AmazonWeb Services (AWS) Cloud where you can launch
AWS resources in a virtual network that you define. You have complete control
over your virtual networking environment, including selection of your own IP
address range, creation of subnets, and configuration of route tables and network
gateways.

You can easily customize the network configuration for your Amazon VPC. For
example, you can create a public-facing subnet for your webservers that has access to the Internet,
and place your backend systems such as databases or application servers in a private-facing subnet
with no Internet access. You can leverage multiple layers of security, including security groups and
network access control lists, to help control access to Amazon EC2 instances in each subnet.¹¹

RDS (Relational Database Service)

RDS

Amazon Relational Database Service (Amazon RDS) is a web service that makes
it easy to set up, operate, and scale a relational database in the cloud. It provides
cost-efficient and resizable capacity while managing time-consuming database
administration tasks, freeing you up to focus on your applications and business.

Amazon RDS gives you access to the capabilities of a familiar MySQL, Oracle,
Microsoft SQL Server, or PostgreSQL database engine. This means that the code,
applications, and tools you already use today with your existing databases can

be used with Amazon RDS. Amazon RDS automatically patches the database software and backs up

¹⁰http://aws.amazon.com/ec2
¹¹http://aws.amazon.com/vpc

Chapter 1: Getting Started with AWS 4

your database, storing the backups for a user-defined retention period and enabling point-in-time
recovery. You benefit from the flexibility of being able to scale the compute resources or storage
capacity associated with your Database Instance (DB Instance) via a single API call.¹²

S3 (Simple Storage Service)

S3

Amazon S3 is storage for the Internet. It is designed tomakeweb-scale computing
easier for developers.

Amazon S3 provides a simple web-services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives any
developer access to the same highly scalable, reliable, secure, fast, inexpensive
infrastructure that Amazon uses to run its own global network of web sites.
The service aims to maximize benefits of scale and to pass those benefits on to

developers.

Amazon S3 provides a highly durable and available store for a variety of content, ranging from web
applications to media files. It allows you to offload your entire storage infrastructure onto the cloud,
where you can take advantage of Amazon S3’s scalability and pay-as-you-go pricing to handle your
growing storage needs. You can distribute your content directly from Amazon S3 or use Amazon S3
as an origin store for pushing content to your Amazon CloudFront edge locations.¹³

ELB (Elastic Load Balancing)

ELB

Elastic Load Balancing automatically distributes incoming application traffic
across multiple Amazon EC2 instances.

It enables you to achieve greater levels of fault tolerance in your applications,
seamlessly providing the required amount of load balancing capacity needed to
distribute application traffic.

Elastic Load Balancing automatically scales its request handling capacity to meet
the demands of application traffic. Additionally, Elastic Load Balancing offers integration with Auto
Scaling to ensure that you have back-end capacity to meet varying levels of traffic levels without
requiring manual intervention.¹⁴

¹²http://aws.amazon.com/rds
¹³http://aws.amazon.com/s3
¹⁴http://aws.amazon.com/elasticloadbalancing

Chapter 1: Getting Started with AWS 5

Route 53

Route53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS)
web service. It is designed to give developers and businesses an extremely reliable
and cost effective way to route end users to Internet applications by translating
names like www.example.com into the numeric IP addresses like 192.0.2.1 that
computers use to connect to each other.

Route 53 effectively connects user requests to infrastructure running in AWS –
such as Amazon EC2 instances, Elastic Load Balancers, or Amazon S3 buckets –

and can also be used to route users to infrastructure outside of AWS.

Route 53 is designed to be fast, easy to use, and cost-effective. It answers DNS queries with low
latency by using a global network of DNS servers. Queries for your domain are automatically routed
to the nearest DNS server, and thus answered with the best possible performance. With Route 53,
you can create and manage your public DNS records with the AWS Management Console or with
an easy-to-use API. It’s also integrated with other Amazon Web Services. For instance, by using
the AWS Identity and Access Management (IAM) service with Route 53, you can control who in
your organization can make changes to your DNS records. Like other Amazon Web Services, there
are no long-term contracts or minimum usage requirements for using Route 53 – you pay only for
managing domains through the service and the number of queries that the service answers.¹⁵

¹⁵http://aws.amazon.com/route53

Chapter 1: Getting Started with AWS 6

AWS Global Infrastructure
Whether you are a large global company or small start-up, you may have potential
customers around the world. With traditional infrastructure, it’s hard to deliver great per-
formance to a broadly distributed user base and most companies focus on one geographic
region at a time to save costs and time. With Cloud Computing, the game changes - you
can easily deploy your application in any or all of the AWS regions around the world.
This means you can provide a lower latency and better experience for your customers at
minimal cost.¹⁶

See detailed list of offerings at all AWS locations¹⁷

¹⁶http://aws.amazon.com/what-is-cloud-computing/#global-reach
¹⁷http://aws.amazon.com/about-aws/globalinfrastructure/regional-product-services

Chapter 1: Getting Started with AWS 7

Setting Up Your AWS Account

If you don’t already have an Amazon Web Services account, open your web browser on your
computer and go to http://aws.amazon.com. Follow the steps below:

1. Click the Sign In to the Console button

2. On the next screen, select the I am a new user radio button, fill in your e-mail address in the
given field, and then click the Sign in using our secure server button

Technically, if you have Amazon retail account, you can sign in using your Amazon.com
account, but it is recommended that you set up a new AWS account.

3. On the next page, enter your name, type your e-mail address again, and enter your password
(twice), then click Create account button

Chapter 1: Getting Started with AWS 8

4. On the next screen, select Personal Account (or Company Account if you want to create an
AWS account for your company), enter the required information on theContact Information
form, type the Security Check characters, confirm your acceptance of the AWS customer
agreement, and then click the Securely Submit button.

5. The next page asks you for a credit card number and your billing address information. Enter
the required information and click Continue button.

Chapter 1: Getting Started with AWS 9

6. On the next page, Amazon wants to confirm your identity. Enter your valid phone or mobile
number and click the Call Me Now button.

Answer the phone and enter the displayed PIN code on the telephone keypad, or you can say
the PIN numbers.

Chapter 1: Getting Started with AWS 10

After the identity verification completed successfully, click the Continue to select your
Support Plan button.

Chapter 1: Getting Started with AWS 11

7. On the next page, choose your support plan and click the Continue button.

8. Setup is now complete, you’ll get an e-mail confirming your account setup.

You have given AWS your credit card information to pay for the resources you use.
Be careful about howmuchAWS resource you use and try to understand the pricing scheme
for each service.
EC2 Pricing Scheme¹⁸
S3 Pricing Scheme¹⁹

Your initial account sign-up provides free usage tier for a year. For a complete list of services
that you can use for free, check out AWS Free Usage Tier²⁰ page.

Amazon provides an online calculator²¹ to estimate your monthly AWS bill.

¹⁸http://aws.amazon.com/ec2/pricing
¹⁹http://aws.amazon.com/s3/pricing
²⁰http://aws.amazon.com/free
²¹http://calculator.s3.amazonaws.com/index.html

Chapter 1: Getting Started with AWS 12

AWS Management Console

Amazon provides a web-based AWS Management Console. You can access and manage Amazon
Web Services resources through a simple and intuitive web-based user interface. The AWSManage-
ment Console is a single destination for managing all your AWS resources, from EC2 instances
to DynamoDB tables. Use the Console to perform any number of tasks, from deploying new
applications to monitoring the health of your application.

The AWS Management Console also enables you to manage all aspects of your AWS account,
including accessing your monthly spending by service, managing security credentials, or even
setting up new IAM Users.

The Console Home

Chapter 1: Getting Started with AWS 13

To see your monthly billing, you can choose Billing & Cost Management from the pull downmenu
under your account name on top right of the page.

Billing and Cost Management

The Billing Dashboard

Chapter 1: Getting Started with AWS 14

You can customize one-click navigation on the menu bar. Click on the Edit pull down menu and
drag your selected service to/from the menu bar.

Customize One-click Navigation

Chapter 1: Getting Started with AWS 15

Each service has its own console, which you can access from the AWS Management Console.

EC2 Console

For a complete guide to AWS Management Console, visit AWS Management Console
Getting Started Guide²² page.

²²http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html

Chapter 1: Getting Started with AWS 16

Create Your First EC2 Instance

EC2 - the Elastic Compute Cloud, is themost widely usedAWS service. EC2 is themost revolutionary
of the AWS services because it has transformed the way of provisioning servers. EC2 provides virtual
servers in a matter of minutes with a few clicks on the AWS Management Console.

Let’s create our first EC2 instance.

Create a Key Pair

First, we need to create a key pair. AWS uses public-key cryptography to secure the login information
for your instance. A Linux instance has no password; you use a key pair to log in to your instance
securely. You specify the name of the key pair when you launch your instance, then provide the
private key when you log in. Key pairs are specific to a region; for example, if you plan to launch an
instance in the Asia Pacific (Sydney) Region, you must create a key pair for the instance in the Asia
Pacific (Sydney) Region.

To create a key pair

1. Open the Amazon EC2 Dashboard https://console.aws.amazon.com/ec2
2. From the navigation bar, select a region for the key pair.

Chapter 1: Getting Started with AWS 17

3. Click Key Pairs in the navigation pane.

4. Click Create Key Pair

5. Enter a name for the new key pair in the Key pair name field of the Create Key Pair dialog
box, and then click Create. Choose a name that is easy for you to remember, such as your
name, followed by -key-pair, plus the region name. For example, yan-key-pair-apsydney.

6. If you use Google Chrome as your browser, the private key file is automatically downloaded by
your browser. The base file name is the name you specified as the name of your key pair, and
the file name extension is .pem. If you use Firefox, the browser might ask you to Open/Save
the file. Save the private key file in a safe place.
Important
This is the only chance for you to save the private key file. You’ll need to provide the name of
your key pair when you launch an instance and the corresponding private key each time you
connect to the instance.

Chapter 1: Getting Started with AWS 18

7. If you will use an SSH client on a Mac or Linux computer to connect to your Linux instance,
use the chmod command to set the permissions of your private key file so that only you can
read it.
$ chmod 400 yan-key-pair-apsydney.pem

If you’ll connect to your Linux instance from a computer running Windows, you can use PuTTY or
MindTerm. If you use PuTTY, you’ll need to install it and use the following procedure to convert
the .pem file to a .ppk file.

To prepare to connect to a Linux instance from Windows using PuTTY

1. Download and install PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty. Be
sure to install the entire suite (Download the installer file under A Windows installer for
everything except PuTTYtel section).

2. Start PuTTYgen (for example, from the Start menu, click All Programs > PuTTY >
PuTTYgen).

3. Under Type of key to generate, select SSH-2 RSA.

4. Click Load. By default, PuTTYgen displays only files with the extension .ppk. To locate your
.pem file, select the option to display files of all types.

Chapter 1: Getting Started with AWS 19

5. Select the private key file that you created in the previous procedure and click Open. Click
OK to dismiss the confirmation dialog box.

6. Click Save private key. PuTTYgen displays a warning about saving the key without a
passphrase. Click Yes.

7. Specify the same name for the key that you used for the key pair. PuTTY automatically adds
the .ppk file extension.

Create a Security Group

Security groups act as a firewall for associated instances, controlling both inbound and outbound
traffic at the instance level. You must add rules to a security group that enable you to connect to your
instance from your IP address using SSH. You can also add rules that allow inbound and outbound
HTTP and HTTPS access from anywhere.

Note that if you plan to launch instances in multiple regions, you’ll need to create a security group
in each region.

You’ll need the public IP address of your local computer, which you can get using a
service from Amazon AWS http://checkip.amazonaws.com. If you are connecting through
an Internet service provider (ISP) or from behind a firewall without a static IP address, you
need to find out the range of IP addresses used by client computers.

To create a security group

1. Open the Amazon EC2 Dashboard https://console.aws.amazon.com/ec2
2. From the navigation bar, select a region for the security group. Security groups are specific to

a region; for example, if you plan to launch an instance in the Asia Pacific (Sydney) Region,
you must create a security group for the instance in the Asia Pacific (Sydney) Region.

3. Click Security Groups in the navigation pane.

Chapter 1: Getting Started with AWS 20

4. Click Create Security Group.

5. Enter a name for the new security group and a description. Choose a name that is easy for
you to remember, such as SG_ plus the region name. For example, SG_apsydney.
On the Inbound tab, create the following rules (click Add Rule for each new rule), and click
Create when you’re done:

• Select HTTP from the Type list, and make sure that Source is set to Anywhere
(0.0.0.0/0).

• Select HTTPS from the Type list, and make sure that Source is set to Anywhere
(0.0.0.0/0).

• Select SSH from the Type list. In the Source box, ensure Custom IP is selected, and
specify the public IP address of your computer or network in CIDR notation. To specify
an individual IP address in CIDR notation, add the routing prefix /32. For example, if
your IP address is 203.0.100.2, specify 203.0.100.2/32. If your company allocates addresses
from a range, specify the entire range, such as 203.0.100.0/24.
Caution
For security reasons, Amazon doesn’t recommend that you allow SSH access from all
IP addresses (0.0.0.0/0) to your instance, except for testing purposes and only for a short
time.

Chapter 1: Getting Started with AWS 21

Create Security Group

You can selectMy IP in the Source box to allow traffic from your IP address.

The following procedure is intended to help you launch your first instance quickly and doesn’t
go through all possible options. For more information about the advanced options see AWS
Documentation on Launching an Instance²³.

To launch an instance

1. Open the Amazon EC2 Dashboard https://console.aws.amazon.com/ec2.
2. From the console dashboard, click Launch Instance.

²³http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html

Chapter 1: Getting Started with AWS 22

3. The Choose an Amazon Machine Image (AMI) page displays a list of basic configurations
called Amazon Machine Images (AMIs) that serve as templates for your instance. Select the
64-bit Amazon Linux AMI. Notice that this configuration is marked “Free tier eligible”. Click
the Select button.

4. On the Choose an Instance Type page, you can select the hardware configuration of your
instance. The t2.micro (or t1.micro, depends on the AMI virtualization type) instance is
selected by default. Click Review and Launch to let the wizard complete other configuration
settings for you, so you can get started quickly.

Chapter 1: Getting Started with AWS 23

5. On the Review Instance Launch page, you can review the settings for your instance.
Under Security Groups, you’ll see that the wizard created and selected a security group for
you. Instead, select the security group that you created when getting set up using the following
steps:

• Click Edit security groups.
• On the Configure Security Group page, ensure the Select an existing security group
option is selected.

• Select your security group from the list of existing security groups, and click Review
and Launch.

6. On the Review Instance Launch page, click Launch.
7. In the Select an existing key pair or create a new key pair dialog box, select Choose

an existing key pair, then select the key pair you created when getting set up. Select the
acknowledgment check box, and then click Launch Instances.

Chapter 1: Getting Started with AWS 24

8. A confirmation page lets you know that your instance is launching. Click View Instances to
close the confirmation page and return to the console.

9. On the Instances screen, you can view the status of your instance. It takes a short time for
an instance to launch. When you launch an instance, its initial state is pending. After the
instance starts, its state changes to running, and it receives a public DNS name. (If the Public
DNS column is hidden, click the Show/Hide icon and select Public DNS).

Chapter 1: Getting Started with AWS 25

To learn more about Amazon EC2 instance type, see http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/instance-types.html

Chapter 1: Getting Started with AWS 26

Connect to Your Instance

If your computer uses Windows operating system, you will need to install PuTTY to connect to your
Linux EC2 instance.

To connect to your Linux instance using PuTTY

1. Start PuTTY (from the Start menu, click All Programs > PuTTY > PuTTY).
2. In the Category pane, select Session and complete the following fields:

• In the Host Name (or IP address) box, enter ec2-user@public_ip. You can use either
Public IP address or Public DNS name of your instance.

• Under Connection type, select SSH.
• Ensure that Port is 22

3. In the Category pane, expand Connection, expand SSH, and then select Auth. Complete the
following:

• Click Browse
• Select the .ppk file that you generated for your key pair, and then click Open
• Click Open to start the PuTTY session.

4. If this is the first time you have connected to this instance, PuTTY displays a security alert
dialog box that asks whether you trust the host you are connecting to. Click Yes. A window
opens and you are connected to your instance.

Chapter 1: Getting Started with AWS 27

Connect from Mac or Linux using an SSH client

If you are using Mac or Linux computer to connect to your instance, your computer most likely
includes and SSH client by default. You can check for an SSH client by typing ssh at the command
line. If your computer doesn’t recognize the command, the OpenSSH project provides a free
implementation of the full suite of SSH tools. For more information, see http://www.openssh.org.

Open your command shell and run the following command:

$ ssh -i /path/key_pair.pem ec2-user@public_ip

For Amazon Linux, the default user name is ec2-user. For RHEL5, the user name is often
root but might be ec2-user. For Ubuntu, the user name is ubuntu. For SUSE Linux, the
user name is root. Otherwise, check with your AMI provider.

Chapter 1: Getting Started with AWS 28

Terminate Your Instance

The purpose of the tutorial in this chapter is to show you how to launch EC2 instance from AWS
Management Console, so you can get basic understanding of EC2, key pair, and security groups. After
you’ve finished with the instance that you created for this chapter, you should clean up, terminate
the instance.

Terminating an instance effectively deletes it because you can’t reconnect to an instance after you’ve
terminated it. This differs from stopping the instance; when you stop an instance, it is shut down
and you are not billed for hourly usage or data transfer. Also, you can restart a stopped instance at
any time.

To terminate the instance

1. Locate your instance in the list of instances on the Instances page. If you can’t find your
instance, verify that you have selected the correct region.

2. Right-click the instance, select Instance State and then click Terminate.

3. Click Yes, Terminate when prompted for confirmation.

Chapter 1: Getting Started with AWS 29

Most parts of this chapter is based on Amazon AWS Online Documentation. This chapter
only covers the basics of AWS and EC2. If you want to learn more about EC2, see
Amazon EC2 User Guide²⁴. For a complete list of Amazon AWS Documentation, visit
AWS Documentation²⁵. You can also watch Introduction to AWS videos here: https://aws.
amazon.com/training/intro_series/.

²⁴http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
²⁵http://aws.amazon.com/documentation

Chapter 2: Getting Started with
Ansible
Ansible is a radically simple IT orchestration engine that automates configuration management,
application deployment, and many other IT needs. Ansible models your IT infrastructure by looking
at the comprehensive architecture of how all of your systems inter-relate, rather than just managing
one system at a time. It uses no agents and no additional custom security infrastructure, so it’s easy
to deploy — and most importantly, it uses a very simple language (YAML, in the form of Ansible
playbooks) that allow you to describe your automation jobs in a way that approaches plain English.

Ansible works by connecting to your nodes and pushing out small programs, called “Ansible
Modules” to them. These programs are written to be resource models of the desired state of the
system. Ansible then executes these modules (over SSH by default), and removes them when
finished. Your library of modules can reside on any machine, and there are no servers, daemons,
or databases required.²⁶

YAML is a recursive acronym for “YAML Ain’t Markup Language”. YAML is a human-
friendly data serialization standard for all programming languages. To learn more about
YAML, visit http://www.yaml.org.

Unlike Chef and Puppet, Ansible uses an agentless architecture. You only need to install Ansible on
the machines that you use to manage your infrastructure. Managed nodes are not required to install
and run background daemons to connect with a controlling machine and pull configuration, thus
reduces the overhead on the network.

In this chapter you’ll learn how to install Ansible, build an inventory file, use Ansible from the
command line, write a simple playbook, and use Ansible modules.

What You’ll Need

To follow the examples in this book, you’ll need a computer, preferably running Linux, connected
to the Internet. You’ll also need to be able to run commands in a terminal and do simple editing of
text files.

Throughout this book I will use the CentOS 6.5 (minimal install) distribution of Linux to run Ansible.
Ansible runs on a number of different platforms, but I’m not going to provide detailed instructions
for all of them. All EC2 instances provisioned byAnsible in this book’s examples will use the Amazon
Linux AMI (Amazon Machine Images) which is based on Red Hat distribution, similar to CentOS.

²⁶http://www.ansible.com/how-ansible-works

Chapter 2: Getting Started with Ansible 31

Installing Ansible

Ansible is written in Python. To install the latest version of Ansible, we will use pip. Pip is a tool
used to manage packages of Python software and libraries. Ansible releases are pushed to pip as
soon as they are released.

To install Ansible via pip:

1. Install RHEL EPEL repository. The EPEL (Extra Packages for Enterprise Linux) repository is
a package repository for Red Hat Enterprise Linux (RHEL) or CentOS, maintained by people
from Fedora Project community, to provide add-on packages from Fedora, which are not
included in the commercially supported Red Hat product line.
$ sudo yum -y update

$ sudo yum -y install wget

$ wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

$ sudo rpm -Uvh epel-release-6*.rpm

2. Install “Development tools” group. The “Development tools” are a yum group, which is a
predefined bundle of software that can be installed at once, instead of having to install
each application separately. The Development tools will allow you to build and compile
software from source code. Tools for building RPMs are also included, as well as source code
management tools like Git, SVN, and CVS.
$ sudo yum groupinstall -y 'development tools'

3. Install python-pip and python-devel
$ sudo yum -y install python-pip python-devel

4. Upgrade setuptools
$ sudo pip install setuptools --upgrade

5. Install Ansible via pip
$ sudo pip install ansible

After the installation has completed successfully, you will be able to run this command to show your
Ansible’s version number:

$ ansible --version

ansible 2.1.1.0

To upgrade ansible to the latest version available in pip repository:
$ sudo pip install ansible --upgrade

Chapter 2: Getting Started with Ansible 32

SSH Keys

Ansible communicates with remote machines over SSH. By default, Ansible 1.3 and later will try to
use native OpenSSH for remote communication when possible. It is recommended that you use SSH
keys for SSH authentication, so Ansible won’t have to ask password to communicate with remote
hosts.

To enable SSH keys authentication:

1. Create public and private keys using ssh-keygen
$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/yan/.ssh/id_rsa):[press ENTER key]

Enter passphrase (empty for no passphrase):[press ENTER key]

Enter same passphrase again:[press ENTER key]

Your identification has been saved in /home/yan/.ssh/id_rsa.

Your public key has been saved in /home/yan/.ssh/id_rsa.pub.

The key fingerprint is:

2. Copy the public key to remote host using ssh-copy-id
(For this example, I will use localhost as the “remote host”)
$ ssh-copy-id -i ∼/.ssh/id_rsa.pub localhost

yan@localhost's password:[enter PASSWORD]

Now try logging into the machine, with "ssh 'localhost'", and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

ssh-copy-id appends the keys to the remote-host’s .ssh/authorized_key.
3. Login to remote host without entering the password

$ ssh localhost

Last login: Sun Jul 31 10:17:35 2016 from ::1

$ exit

logout

Connection to localhost closed.

Chapter 2: Getting Started with Ansible 33

Inventory

Ansible works against multiple nodes in your infrastructure at the same time, by selecting portions
of nodes listed in Ansible’s inventory file. By default, Ansible uses /etc/ansible/hosts for the
inventory file. You can have another path for hosts file and specify the path using -i option when
running ansible or ansible-playbook command.

The format for the host inventory file is an INI format and looks like this:

1 one.example.com

2

3 [webservers]

4 web1.example.com

5 web2.example.com

6 two.example.com

7

8 [dbservers]

9 db1.example.com

10 db2.example.com

11 two.example.com

The words in brackets are group names, which are used in classifying nodes and deciding what
hosts you are controlling in an Ansible task. One node can be a member of more than one group,
like two.example.com on the above example.

To add a lot of hosts with similar patterns you can specify range like this:

1 [webservers]

2 web[01:50].example.com

3

4 [databases]

5 db-[a:f].example.com

It is also possible to make groups of groups:

Chapter 2: Getting Started with Ansible 34

1 [sydney]

2 host1

3 host2

4

5 [singapore]

6 host3

7 host4

8

9 [asiapacific:children]

10 sydney

11 singapore

Host Variables

You can specify variables in hosts file that will be used later in Ansible playbooks:

1 [webservers]

2 web1.example.com ansible_user=ec2-user

3 web2.example.com ansible_user=ubuntu

Assuming the inventory file path is /home/yan/ansible4aws/hosts, you can store host variables, in
YAML format, in individual files:

/home/yan/ansible4aws/host_vars/web1.example.com

/home/yan/ansible4aws/host_vars/web2.example.com

For example, the data in the host variables file /home/yan/ansible4aws/host_vars/web1.example.com
might look like:

1 ---

2 ansible_user: ec2-user

3 ansible_port: 5300

4 ansible_ssh_private_key_file: /home/yan/.ssh/keypair1.pem

The following variables control how Ansible interacts with remote hosts:

ansible_host

The name of the host to connect to, if different from the alias you wish to give to it.

ansible_port

The ssh port number, if not 22

ansible_user

The default ssh user name to use.

Chapter 2: Getting Started with Ansible 35

ansible_ssh_pass

The ssh password to use (this is insecure, it’s strongly recommended to use –ask-pass or SSH
keys)

ansible_ssh_private_key_file

Private key file used by ssh. Useful if using multiple keys and you don’t want to use SSH agent.

ansible_ssh_common_args

This setting is always appended to the default command line for sftp, scp, and ssh. Useful to
configure a ProxyCommand for a certain host (or group).

ansible_sftp_extra_args

This setting is always appended to the default sftp command line.

ansible_scp_extra_args

This setting is always appended to the default scp command line.

ansible_ssh_extra_args

This setting is always appended to the default ssh command line.

ansible_ssh_pipelining

Determines whether or not to use SSH pipelining. This can override the pipelining setting
in ansible.cfg.

Privilege escalation:

ansible_become

Equivalent to ansible_sudo or ansible_su, allows to force privilege escalation

ansible_become_method

Allows to set privilege escalation method

ansible_become_user

Equivalent to ansible_sudo_user or ansible_su_user, allows to set the user you become through
privilege escalation

ansible_become_pass

Equivalent to ansible_sudo_pass or ansible_su_pass, allows you to set the privilege escalation
password

Remote host environment parameters:

ansible_shell_type

The shell type of the target system. You should not use this setting unless you have set the
ansible_shell_executable to a non-Bourne (sh) compatible shell. By default commands are
formatted using sh-style syntax. Setting this to csh or fishwill cause commands executed on
target systems to follow those shell’s syntax instead.

Chapter 2: Getting Started with Ansible 36

ansible_python_interpreter

The target host python path. This is useful for systems with more than one Python or not
located at “/usr/bin/python” such as *BSD, or where /usr/bin/python is not a 2.X series Python.

ansible_*_interpreter

Works for anything such as ruby or perl and works just like ansible_python_interpreter.
This replaces shebang of modules which will run on that host.

You can find more documentation on host variables here: http://docs.ansible.com/ansible/intro_
inventory.html#host-variables

Group Variables

Variables can be applied to an entire group at once:

1 [sydney]

2 node1

3 node2

4

5 [sydney:vars]

6 ntp_server=ntp.sydney.example.com

7 proxy_server=proxy.sydney.example.com

It is also possible to assign variables to groups of groups:

1 [sydney]

2 host1

3 host2

4

5 [singapore]

6 host3

7 host4

8

9 [asiapacific:children]

10 sydney

11 singapore

12

13 [asiapacific:vars]

14 db_server=db1.asiapacific.example.com

Chapter 2: Getting Started with Ansible 37

Assuming the inventory file path is /home/yan/ansible4aws/hosts, you can store group variables,
in YAML format, in individual files:

/home/yan/ansible4aws/group_vars/sydney

For example, the data in the group variables file /home/yan/ansible4aws/group_vars/sydneymight
look like:

1 ---

2 ntp_server: ntp.sydney.example.com

3 proxy_server: proxy.sydney.example.com

Chapter 2: Getting Started with Ansible 38

Your First Commands

It’s time to get started with some Ansible basic commands. Let’s create our Ansible inventory file in
your home directory /home/yan/ansible4aws/hosts. If the directory /home/yan/ansible4aws does
not exist, create the directory first.

$ mkdir /home/yan/ansible4aws && cd /home/yan/ansible4aws

$ vi hosts

1 [local]

2 localhost

3

4 # You can add more hosts

5 # [mygroup]

6 # 192.168.1.10

7 # 192.168.1.11

Now ping all your nodes:

$ ansible -i hosts all -m ping

Ansible will attempt to connect to remote machines using your current user name, just like SSH
would. To override the remote user name, use the -u parameter.

We can also run a live command on all of our nodes:

$ ansible -i hosts all -a "/bin/echo hello"

The above examples show how to use /usr/bin/ansible for running ad-hoc tasks. An ad-hoc
command can be used to do quick things that youmight not necessarily want to write a full playbook
for. For example, if you want to restart some services on remote hosts.

Chapter 2: Getting Started with Ansible 39

Playbooks

Playbooks are Ansible’s configuration, deployment, and orchestration language. They are a com-
pletely different way to use Ansible than in ad-hoc task execution mode.

Playbooks are written in YAML format and have a minimum of syntax, which intentionally tries to
not be a programming language or script, but rather a model of a configuration or a process. Writing
in YAML format allow you to describe your automation jobs in a way that approaches plain English.
It is easy to learn and easy to understand for new Ansible users, but it is also powerful for expert
users.

Each playbook is composed of one or more ‘plays’ in a list. A play maps a group of hosts to some
well defined roles, represented by ansible ‘tasks’. A task is a call to an Ansible module.

Ansible Playbook

Amodule can control system resources, like services, packages, or files, or anything on remote hosts.
Modules can be executed from the command line using /usr/bin/ansible, or by writing a playbook
and run it using /usr/bin/ansible-playbook command. Each module supports taking arguments.
Nearly all modules take key=value arguments, space delimited. Some modules take no arguments,
and the command/shell modules simply take the string of the command you want to run.

Examples of executing modules from the command line:

$ ansible webservers -m service -a "name=httpd state=started"

$ ansible webservers -m ping

Chapter 2: Getting Started with Ansible 40

$ ansible webservers -m command -a "/sbin/reboot -t now"

Executing modules from playbooks:

1 - name: reboot the servers

2 command: /sbin/reboot -t now

Ansible ships with hundreds of modules. Some examples of Ansible modules:

• Package management: yum, apt
• Remote execution: command, shell
• Service management: service
• File handling: copy, template
• SCM: git, subversion
• Database: mysql_db, redis
• Cloud: digital_ocean, ec2, gce

For a complete list of Ansible modules, see Ansible Module Index²⁷ page.

Most modules are ‘idempotent’, they will only make changes in order to bring the system to the
desired state. It is safe to rerun the same playbook multiple times. It won’t make changes if the
desired state has been achieved.

YAML Syntax
For Ansible playbook, nearly every YAML file starts with a list. Each item in the list is a
list of key/value pairs, commonly called a “hash” or a “dictionary”. All YAML files should
begin with "---", which indicates the start of a document.
All members of a list are lines beginning at the same indentation level starting with a “-“
(dash) character:

1 ---

2 - hosts: webservers

3 tasks:

4 - name: ensure apache is installed

5 yum: name=httpd state=present

6 - hosts: databases

7 tasks:

8 - name: ensure mysql server is installed

9 yum: name=mysql-server state=present

A play in playbook consists of three sections: the hosts section, the variables section, and the tasks
section. You can include as many plays as you like in a single playbook.

²⁷http://docs.ansible.com/modules_by_category.html

Chapter 2: Getting Started with Ansible 41

The hosts section

The hosts section defines hosts on which the play will be run, and how it will be run. In this section
you can set the SSH username or other SSH-related settings needed to connect to the targeted hosts.

1 - hosts: webservers

2 remote_user: root

The hosts that a play will be run on must be set in the value of hosts. This value uses the same
host-pattern-matching syntax as the one used in Ansible command line:

• The following patterns target all hosts in inventory:
all

*

• To address a specific host or set of hosts by name or IP addresses and wildcards:
one.example.com

one.example.com:two.example.com

192.168.1.1

192.168.1.*

*.example.com

• The following patterns address one or more groups. Groups separated by a colon indicate an
“OR” configuration (the host may be in either one group or the other):
webservers

webservers:dbservers

• To exclude groups:
webservers:!sydney

all hosts must be in the webservers group but not in the sydney group
• Group intersection:
webservers:&staging

all hosts must be in the webservers group and also in the staging group
• You can also use regular expressions. Start the pattern with a "∼":
∼(web|db).*\.example\.com

In this section you can provide some parameters:

become

set to ‘true’/’yes’ to activate privilege escalation.

become_user

set to user with desired privileges, the user you ‘become’, NOT the user you login as. Does
NOT imply become: yes, to allow it to be set at host level.

Chapter 2: Getting Started with Ansible 42

become_method

at play or task level overrides the default method set in ansible.cfg, set to ‘sudo’, ‘su’, ‘pbrun’,
‘pfexec, ‘doas’, or ‘dzdo’

connection

Tells Ansible what connection method to use to connect to the remote hosts. You can use ssh,
paramiko, or local.

gather_facts

If set to no Ansible will not run the setup module to collect facts from remote hosts.

The variables section

In this section you can define variables that apply to the entire play on all hosts. You can also tell
Ansible to prompt for variables. This section allows you to have all the configuration for the play
stored at the top, so you can easily read and modify.

1 - hosts: webservers

2 vars:

3 http_port: 80

4 region: ap-southeast-2

To use the variable in the tasks section, use "{{ variable }}" syntax:

1 - hosts: webservers

2 vars:

3 region: ap-southeast-2

4 tasks:

5 - name: create key pair

6 local_action:

7 module: ec2_key

8 region: "{{ region }}"

Variables can also be loaded from external YAML files. This is done using the vars_files directive:

1 - hosts: webservers

2 vars_files:

3 - /vars/external_vars.yml

You can instruct Ansible to prompt for variables using the vars_prompt directive:

Chapter 2: Getting Started with Ansible 43

1 vars_prompt:

2 - name: 'vpc_subnet_id'

3 prompt: 'Enter the VPC subnet ID: '

It is also possible to send variables over the Ansible command line:

Example:

1 ---

2

3 - hosts: '{{ hosts }}'

4 remote_user: '{{ user }}'

5

6 tasks:

7 - ...

Run the playbook and pass the variables:
$ ansible-playbook -i hosts site.yml --extra-vars "hosts=dbservers user=ec2-user"

The tasks section

Each play contains a list of tasks. Tasks are executed in order, one at a time, against all hosts matched
by the host pattern, before moving on to the next task. When running the playbook, which runs top
to bottom, hosts with failed tasks are taken out of the execution for the entire playbook, and error
messages for the hosts will be displayed. If the run failed, simply correct the playbook and rerun.

Every task should have a name. The name should have a good description of what the task do. It
will be included in the output messages from running the playbook. Below the name line, you can
declare the action. Tasks can be declared using the older “action:module options” format, but it is
recommended to use the “module:options” format.

1 tasks:

2 - name: make sure apache is running

3 service: name=httpd state=running

The command and shell modules are the only modules that just take a list of arguments and don’t
use the key=value form:

1 tasks:

2 - name: disable selinux

3 command: /sbin/setenforce 0

The command and shell modules will return error code. If the exit code is not zero you can ignore
the error:

Chapter 2: Getting Started with Ansible 44

1 tasks:

2 - name: run somecommand and ignore the return code

3 shell: /usr/bin/somecommand

4 ignore_errors: yes

If the action line is getting too long, you can break it into separate lines, indent any continuation
lines:

1 tasks:

2 - name: Copy somefile to remote host

3 copy: src=/home/somefile dest=/etc/somefile

4 owner=root group=root mode=0644

Handlers

Handlers are lists of tasks, referenced by name, called by notify directive. Notify actions are
triggered when the task made a change on the remote system. If many tasks in a play notify one
handler, it will run only once, after all tasks completed in a particular play.

1 tasks:

2 - name: Configure ntp file

3 template: src=ntp.conf.j2 dest=/etc/ntp.conf

4 notify: restart ntp

5

6 handlers:

7 - name: restart ntp

8 service: name=ntpd state=restarted

The service ntpd will be restarted only if the template module made changes to remote hosts file
/etc/ntp.conf.

Chapter 2: Getting Started with Ansible 45

Your First Playbook

Let’s create our first playbook and run it.

Make sure you have created the inventory file hosts:

$ cd /home/yan/ansible4aws

$ vi hosts

1 [local]

2 localhost

Create a playbook file site.yml:

$ vi site.yml

1 ---

2 - hosts: localhost

3 tasks:

4 - name: ensure apache is at the latest version

5 yum: name=httpd state=latest

6 - name: ensure apache is running

7 service: name=httpd state=started

Save the file and run the playbook:

$ ansible-playbook -i hosts site.yml

Running Our First Playbook

Apache is now installed and running.

ps ax | grep httpd

2357 ? Ss 0:00 /usr/sbin/httpd

Chapter 2: Getting Started with Ansible 46

2360 ? S 0:00 /usr/sbin/httpd

2361 ? S 0:00 /usr/sbin/httpd

2362 ? S 0:00 /usr/sbin/httpd

2363 ? S 0:00 /usr/sbin/httpd

2364 ? S 0:00 /usr/sbin/httpd

2365 ? S 0:00 /usr/sbin/httpd

$ yum info httpd

Installed Packages

Name : httpd

Arch : x86_64

Version : 2.2.15

Release : 30.el6.centos

Size : 2.9 M

Repo : installed

From repo : updates

Summary : Apache HTTP Server

URL : http://httpd.apache.org/

License : ASL 2.0

Now, let’s uninstall Apache using our playbook

$ vi site.yml

1 ---

2 - hosts: localhost

3 tasks:

4 - name: ensure apache is absent

5 yum: name=httpd state=absent

Save the file and run the playbook:

$ ansible-playbook -i hosts site.yml

Ensure Apache is Absent

Apache is successfully uninstalled from localhost.

Chapter 2: Getting Started with Ansible 47

Roles and Include Statements

It is possible to write everything in a single playbook, list all tasks in one very large file for your
entire infrastructure, but it will be very hard to read and to maintain. Roles and include statements
can help you organize things.

At a basic level, include directive can be used to break up bits of configuration policy into smaller
files. You can write tasks in a separate file and include it in your play. Playbooks can also include
plays from other playbook files.

A task include file simply contains a flat list of tasks, for example:

1 ---

2 # saved as tasks/task1.yml

3

4 - name: task one

5 command: /bin/commandone

6

7 - name: task two

8 command: /bin/commandtwo

Include directives look like this, and can be mixed in with regular tasks in a playbook:

1 tasks:

2 - include: tasks/task1.yml

Roles are a better way to organize your playbooks. Roles are ways of automatically loading certain
variables, tasks, and handlers based on a known file structure. Grouping content using roles makes
it easier to share roles with other users.

Example project structure:

site.yml

webservers.yml

dbservers.yml

roles/

common/

files/

templates/

tasks/

handlers/

vars/

meta/

Chapter 2: Getting Started with Ansible 48

webservers/

files/

templates/

tasks/

handlers/

vars/

meta/

In a playbook, it would look like this:

1 ---

2 - hosts: webservers

3 roles:

4 - common

5 - webservers

This designates the following behaviors, for each role ‘x’:

• If roles/x/tasks/main.yml exists, tasks listed therein will be added to the play
• If roles/x/handlers/main.yml exists, handlers listed therein will be added to the play
• If roles/x/vars/main.yml exists, variables listed therein will be added to the play
• If roles/x/meta/main.yml exists, any role dependencies listed therein will be added to the list
of roles

• Any copy tasks can reference files in roles/x/files/ without having to path them relatively or
absolutely

• Any script tasks can reference scripts in roles/x/files/ without having to path them relatively
or absolutely

• Any template tasks can reference files in roles/x/templates/ without having to path them
relatively or absolutely

• Any include tasks can reference files in roles/x/tasks/ without having to path them relatively
or absolutely

Ansible is a young rising project and may be rapidly changing. To update your knowledge
of Ansible, visit Ansible documentations²⁸ page.

Ansible provides a nice quick start video. You can find it here http://www.ansible.com/
resources

²⁸http://docs.ansible.com

Chapter 6: VPC Provisioning with
Ansible
Amazon Virtual Private Cloud (Amazon VPC) enables you to launch Amazon Web Services (AWS)
resources into a virtual network that you’ve defined. This virtual network closely resembles a
traditional network that you’d operate in your own data center, with the benefits of using the
scalable infrastructure of AWS. ²⁹

Using Ansible for Amazon VPC provisioning allows you to manage your AWS infrastructure as a
code base. It means that you are writing code to define your infrastructure. By applying version
control system (VCS) like git, your infrastructure is subject to version control. You will be able to
easily re-create your whole infrastructure, revert back to previous version of your infrastructure,
and setup a consistent development, testing, and production environment.

In this chapter, you will learn about AWS Virtual Private Cloud (VPC) basics and how to use Ansible
to provision AWS VPC; including VPC subnets, VPC routing tables, and VPC security groups. You
will learn how to use Ansible to launch EC2 instances in VPC subnet and attach VPC security groups
to the instances. I will also show you how to provision NAT instance in your VPC.

The Default VPC

When you launch an EC2 instance without creating and specifying a non-default VPC, Amazon
launches the instance into your default VPC. All examples from chapter 1, 3, and 4 launched EC2
instances into the default VPC. You can see the default VPC on your Amazon VPC console https:
//console.aws.amazon.com/vpc.

Amazon creates a default VPC with the following set up:

• a default subnet in each Availability Zone
• an Internet gateway connected to your default VPC
• a main route table for your default VPC with a rule that sends all traffic destined for the
Internet to the Internet gateway

• a default security group associated with your default VPC
• a default network access control list (ACL) associated with your VPC
• a default DHCP options set for your AWS account associated with your default VPC

²⁹http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

Chapter 6: VPC Provisioning with Ansible 50

Amazon has multiple locations world-wide. These locations are composed of regions and
Availability Zones. Each region is a separate geographic area. Each region has multiple,
isolated locations known as Availability Zones. Amazon provides you the ability to place
resources, such as instances, and data in multiple locations. Resources aren’t replicated
across regions unless you do so specifically.

A network access control list (ACL) is an optional layer of security that acts as a firewall
for controlling traffic in and out of a subnet. You might set up network ACLs with rules
similar to your security groups in order to add an additional layer of security to your VPC.

The following figure illustrates the key components that Amazon set up for a default VPC: ³⁰

The CIDR block for a default VPC is always 172.31.0.0/16, which provides up to 65,536 private IP
addresses. A default subnet has a /20 subnet mask, which provides up to 4,096 addresses per subnet.
Some addresses are reserved for Amazon’s use.

By default, a default subnet is connected to the Internet through the Internet gateway. Instances that
you launch into a default subnet receive both a private IP address and a public IP address.

³⁰http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html

Chapter 6: VPC Provisioning with Ansible 51

Getting Started with VPC

A virtual private cloud (VPC) is a virtual network dedicated to your AWS account. It is logically
isolated from other virtual networks in the AWS cloud. You can launch your AWS resources, such
as Amazon EC2 instances, into your VPC. ³¹

When you create a VPC, you specify the range of IP addresses for the VPC in the form of
a Classless Inter-Domain Routing (CIDR) block; for example, 10.0.0.0/16. For more information
about CIDR notation and what “/16” means, go to https://en.wikipedia.org/wiki/Classless_Inter-
Domain_Routing.

You must use a private address space for the VPC CIDR block. For more information about private
address, go to https://en.wikipedia.org/wiki/Private_network.

You can create a VPC that spans multiple Availability Zones. After creating a VPC, you can add
one or more subnets in each Availability Zone. When you create a subnet, you specify the CIDR
block for the subnet, which is a subset of the VPC CIDR block. Each subnet must reside entirely
within one Availability Zone and cannot span zones. Availability Zones are distinct locations that
are engineered to be isolated from failures in other Availability Zones. By launching instances in
separate Availability Zones, you can protect your applications from the failure of a single location.

For more information about VPC and subnet sizing go to http://docs.aws.amazon.com/AmazonVPC/
latest/UserGuide/VPC_Subnets.html.

There are many tools available to help you calculate subnet CIDR blocks; for example, see http:
//www.subnet-calculator.com/cidr.php.

To get started with Amazon VPC, let’s create a VPC and subnets from the VPC console. If you have
done this before, you can skip this section. We will create a VPC for a multi-tier website scenario,
with the web servers in a public subnet and the database servers in a private subnet. This scenario
will be used for all examples in this chapter.

The instances in the public subnet can receive inbound traffic directly from the Internet, whereas the
instances in the private subnet can’t. The instances in the public subnet can send outbound traffic
directly to the Internet, whereas the instances in the private subnet can’t. Instead, the instances in
the private subnet can access the Internet by using a network address translation (NAT) instance
that you launch into the public subnet. AWS also provides managed NAT gateway service you can
launch in your VPC, but for this book I will not use that. For your production environment you
will definitely need to use AWS managed NAT service to provide better availability and higher
bandwidth.

The following diagram shows the key components of the configuration for the scenario. ³²

³¹http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
³²http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

Chapter 6: VPC Provisioning with Ansible 52

VPC Diagram

VPC Sizing
The allowed CIDR block size for a VPC is between a /28 netmask and /16 netmask,
therefore the VPC can contain from 16 to 65,536 IP addresses.

You can’t change the size of a VPC after you create it. If your VPC is too small to meet your
needs, you must terminate all the instances in the VPC, delete the VPC, and then create a
new, larger VPC.

The following list describes the basic components presented in the configuration diagram for this
scenario:

• A virtual private cloud (VPC) of size /16 (CIDR: 10.0.0.0/16). This provides 65,536 private
IP addresses.

• A public subnet of size /24 (CIDR: 10.0.0.0/24). This provides 256 private IP addresses.
• A private subnet of size /24 (CIDR: 10.0.1.0/24). This provides 256 private IP addresses.

Chapter 6: VPC Provisioning with Ansible 53

• An Internet gateway. This connects the VPC to the Internet and to other AWS products, such
as Amazon Simple Storage Service (Amazon S3).

• Instances with private IP addresses in the subnet range (examples: 10.0.0.5, 10.0.1.5), which
enables them to communicate with each other and other instances in the VPC. Instances in
the public subnet also have Elastic IP addresses (example: 198.51.100.1), which enable them to
be reached from the Internet. Instances in the private subnet are back-end servers that don’t
need to accept incoming traffic from the Internet; however, they can send requests to the
Internet using the NAT instance (see the next bullet).

• A network address translation (NAT) instance with its own Elastic IP address. This enables
instances in the private subnet to send requests to the Internet (for example, for software
updates).

• A custom route table associated with the public subnet. This route table contains an entry that
enables instances in the subnet to communicate with other instances in the VPC, and an entry
that enables instances in the subnet to communicate directly with the Internet.

• The main route table associated with the private subnet. The route table contains an entry
that enables instances in the subnet to communicate with other instances in the VPC, and an
entry that enables instances in the subnet to communicate with the Internet through the NAT
instance.

To create a VPC:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, click Your VPCs.

3. Click Create VPC.
4. Enter the desired Name tag and CIDR block for the VPC and select Tenancy: Default.

Chapter 6: VPC Provisioning with Ansible 54

5. Click Yes, Create button.

Each VPC has a related instance tenancy attribute. You can’t change the instance tenancy
of a VPC after you create it. A dedicated VPC tenancy attribute means that all instances
launched into the VPC are Dedicated Instances, regardless of the value of the tenancy
attribute for the instance. If you set this to default, then the tenancy attribute will follow
the tenancy attribute setting on each instance. A default tenancy instance runs on shared
hardware. A dedicated tenancy instance runs on single-tenant hardware.
Dedicated Instances are Amazon EC2 instances that run in a virtual private cloud (VPC)
on hardware that’s dedicated to a single customer. Your Dedicated Instances are physically
isolated at the host hardware level from your instances that aren’t Dedicated Instances
and from instances that belong to other AWS accounts. To see the pricing for dedicated
instances go to http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/.

Chapter 6: VPC Provisioning with Ansible 55

To create an Internet gateway and attach it to a VPC:

1. In the VPC Dashboard navigation pane, click Internet Gateways.

2. Click Create Internet Gateway.
3. Enter the desired Name tag for this Internet gateway.

4. Click Yes, Create button.
5. Select the new Internet gateway and click Attach to VPC

Chapter 6: VPC Provisioning with Ansible 56

6. Select the desired VPC and click Yes, Attach.

To create subnets on the VPC:

1. In the VPC Dashboard navigation pane, click Subnets.

2. Click Create Subnet
3. Enter the desiredName tag andCIDR block for the public subnet, select VPC and Availability

Zone.

Chapter 6: VPC Provisioning with Ansible 57

4. Click Yes, Create.
5. Click Create Subnet.

Enter the desired Name tag and CIDR block for the private subnet, select VPC and
Availability Zone.

6. Click Yes, Create.

Chapter 6: VPC Provisioning with Ansible 58

Route Tables

The following are the basic things that you need to know about route tables:³³

• Your VPC has an implicit router.
• Your VPC automatically comes with a main route table that you can modify.
• You can create additional custom route tables for your VPC.
• Each subnet must be associated with a route table, which controls the routing for the subnet. If
you don’t explicitly associate a subnet with a particular route table, the subnet uses the main
route table.

• You can replace the main route table with a custom table that you’ve created (so that this table
is the default table each new subnet is associated with).

• Each route in a table specifies a destination CIDR and a target.

Main Route Table

When you create a VPC, it automatically has a main route table. To see the main route tables for
your VPC, in the VPC Dashboard navigation pane, click Route Tables.

The Main Route Table

Initially, the main route table (and every route table in a VPC) contains only a single route: a local
route that enables communication within the VPC. You can’t modify the local route in a route table.
Whenever you launch an instance in the VPC, the local route automatically covers that instance;
you don’t need to add the new instance to a route table.

³³http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Route_Tables.html

Chapter 6: VPC Provisioning with Ansible 59

If you don’t explicitly associate a subnet with a route table, the subnet is implicitly associated with
the main route table. However, you can still explicitly associate a subnet with the main route table.
You might do that if you change which table is the main route table. The console shows the number
of subnets associated with each table. Only explicit associations are included in that number.

For the scenario in this section, the main route tables should contain an entry that enables instances
in the private subnet to communicate with the Internet through the NAT instance, but I’m not
going to provide instructions for manually creating a NAT instance here. If you want to learn about
this, follow the instruction here: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_
NAT_Instance.html and then you could edit the main route table and add an entry: destination
0.0.0.0/0, target nat-instance-id. I will show you later in this chapter how to provision a NAT
instance using Ansible.

Custom Route Tables

To create a custom route table for the public VPC:

1. In the VPC Dashboard navigation pane, click Route Tables.
2. Click Create Route Table.
3. Enter the desired Name tag and select VPC.

4. Click Yes, Create.

To edit the custom route table and associate it to the public subnet:

1. In the VPC Dashboard navigation pane, click Route Tables. Select the custom route table we
created for public subnet and select the Routes tab.

Chapter 6: VPC Provisioning with Ansible 60

2. Click Edit button.
3. Enter 0.0.0.0/0 CIDR block in the Destination field and select the Internet gateway from

the Target list.

4. Click Save.
5. Select Subnet Associations tab.

Chapter 6: VPC Provisioning with Ansible 61

6. Click Edit.
7. Select the Associate check box for public subnet and click Save.

Chapter 6: VPC Provisioning with Ansible 62

VPC Provisioning

We will use Ansible ec2_vpc module to create or terminate AWS Virtual Private Cloud (VPC).
Options for this module are listed in the following table:

parameter required default choices comments

aws_access_key no AWS access key. If not set then the value of the
AWS_ACCESS_KEY environment variable is used
aliases: ec2_access_key, access_key

aws_secret_key no AWS secret key. If not set then the value of the
AWS_SECRET_KEY environment variable is used
aliases: ec2_secret_key, secret_key

cidr_block yes The cidr block representing the VPC,
e.g. 10.0.0.0/16, required when state is
‘present’

dns_hostnames no yes yes Toggles the “Enable DNS hostname support for
no instances” flag

dns_support no yes yes Toggles the “Enable DNS resolution” flag
no

ec2_url no URL to use to connect to EC2 or your Eucalyptus
cloud (by default the module will use EC2
endpoints). Must be specified if region is not
used. If not set then the value of the EC2_URL
environment variable, if any, is used

instance_tenancy no default default The supported tenancy options for instances
dedicated launched into the VPC

internet_gateway no no yes Toggles whether there should be an Internet
no gateway attached to the VPC

profile no Uses a boto profile. Only works with
(added in 1.6) boto >= 2.24.0

region no Region in which the resource exists

resource_tags yes A dictionary array of resource tags of the form:
{ tag1: value1, tag2: value2 }. Tags in this
list are used in conjunction with CIDR block to
uniquely identify a VPC in lieu of vpc_id.
Therefore, if CIDR/Tag combination does not
exist, a new VPC will be created. VPC tags not
on this list will be ignored.

route_tables no A dictionary array of route tables to add of the
form: { subnets: [172.22.2.0/24, routes:

Chapter 6: VPC Provisioning with Ansible 63

parameter required default choices comments

[{ dest: 0.0.0.0/0, gw: igw},] }.Where
the
subnets list is those subnets the route table
should be associated with, and the routes list
is a list of routes to be in the table. The
special keyword for the gw of igw specifies
that the route should go through the internet
gateway attached to the VPC. gw also accepts
instance-ids. This module is currently unable to
affect the “main” route table due to some
limitations in boto, so you must explicitly
define the associated subnets or they will be
attached to the main table implicitly.

security_token no AWS STS security token. If not set then the
(added in 1.6) value of the AWS_SECURITY_TOKEN or

EC2_SECURITY_TOKEN environment variable
is used.
aliases: access_token

state yes present Create or terminate the VPC

subnets no A dictionary array of subnets to add of the form
{ cidr: ..., az: ... , resource_tags: ...

}. .
Where az is the desired availability zone of the
subnet, but it is not required.
All VPC subnets not in this list will be removed

validate_certs no yes yes When set to “no”, SSL certificates will not be
no validated for boto versions >= 2.6.0. (added in

Ansible 1.5)

vpc_id no A VPC id to terminate when state=absent

wait no no yes Wait for the VPC to be in state ‘available’
no before returning

wait_timeout no 300 How long before wait gives up, in seconds

The following playbook will show you how to create VPC, subnets, and route tables, using the same
public and private subnets scenario as used in preceding section.

$ cd /home/yan/ansible4aws

$ vi vpc_create.yml

Chapter 6: VPC Provisioning with Ansible 64

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars:

6 region: ap-southeast-2

7 # prefix for naming

8 prefix: staging

9 # availability zone

10 az: ap-southeast-2a

11 tasks:

12 - name: create vpc

13 ec2_vpc:

14 region: "{{ region }}"

15 cidr_block: 10.0.0.0/16

16 resource_tags: '{"Name":"{{ prefix }}_vpc"}'

17 subnets:

18 - cidr: 10.0.0.0/24

19 az: "{{ az }}"

20 resource_tags: '{"Name":"{{ prefix }}_subnet_public"}'

21 - cidr: 10.0.1.0/24

22 az: "{{ az }}"

23 resource_tags: '{"Name":"{{ prefix }}_subnet_private"}'

24 internet_gateway: yes

25 route_tables:

26 - subnets:

27 - 10.0.0.0/24

28 routes:

29 - dest: 0.0.0.0/0

30 gw: igw

31 register: vpc

32 - name: write vpc id to {{ prefix }}_vpc_info file

33 shell: echo "{{ prefix }}"_vpc":" "{{ vpc.vpc_id }}"

34 > "{{ prefix }}"_vpc_info

35 - name: write subnets id to {{ prefix }}_vpc_info file

36 shell: echo "{{ item.resource_tags.Name }}"":" "{{ item.id }}"

37 >> "{{ prefix }}"_vpc_info

38 with_items: vpc.subnets

Run the playbook:

$ ansible-playbook -i hosts vpc_create.yml

The playbook will create a VPC with resource tags Name=staging_vpc and 2 subnets with resource

Chapter 6: VPC Provisioning with Ansible 65

tags Name=staging_subnet_public and Name=staging_subnet_private. You could easily create a
duplicate VPC with its subnets, route tables, etc simply by changing the prefix variable and run
the playbook again.

You should see the staging_vpc created and listed on the VPC console. Open the Amazon VPC
console at https://console.aws.amazon.com/vpc/ and select Your VPCs in the navigation pane.

staging_vpc

You should also see new staging subnets on the Subnets list:

New Subnets

You can see from the preceding playbook that I registered the output of ec2_vpcmodule then wrote
the VPC id and subnets id to a file called staging_vpc_info.

The content of staging_vpc_info file should look like this:

1 staging_vpc: vpc-xxxxxxxx

2 staging_subnet_public: subnet-xxxxxxxx

3 staging_subnet_private: subnet-xxxxxxxx

We can use the staging_vpc_info file as a variables file for another playbook.

Chapter 6: VPC Provisioning with Ansible 66

For example, the following is a playbook to delete the VPC we have created with the preceding
playbook.

$ vi vpc_delete.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars:

6 region: ap-southeast-2

7 vars_files:

8 - staging_vpc_info

9 tasks:

10 - name: delete vpc

11 ec2_vpc:

12 region: "{{ region }}"

13 state: absent

14 # get the vpc_id from staging_vpc_info file

15 vpc_id: "{{ staging_vpc }}"

16 wait: yes

You could run the vpc_delete.yml playbook to delete the staging_vpc you have created with the
vpc_create.yml playbook. Simply re-run the vpc_create.yml playbook to create new staging_vpc

after the deletion.

When you delete a VPC, Amazon deletes all its components, such as subnets, security
groups, network ACLs, route tables, Internet gateways, VPC peering connections, and
DHCP options. If you have instances launched in the VPC, you have to terminate all
instances in the VPC first before deleting the VPC.

Chapter 6: VPC Provisioning with Ansible 67

VPC Security Groups

We have learned about Security Groups provisioning in Chapter 3. A security group acts as a virtual
firewall for your instance to control inbound and outbound traffic. When you launch an instance in
a VPC, you can assign the instance to up to five security groups. Security groups act at the instance
level, not the subnet level. Therefore, each instance in a subnet in your VPC could be assigned to a
different set of security groups. If you don’t specify a particular group at launch time, the instance
is automatically assigned to the default security group for the VPC. ³⁴

The following are the basic characteristics of security groups for your VPC:

• You can create up to 100 security groups per VPC. You can add up to 50 rules to each security
group. If you need to apply more than 50 rules to an instance, you can associate up to 5 security
groups with each network interface.

• You can specify allow rules, but not deny rules.
• You can specify separate rules for inbound and outbound traffic.
• By default, no inbound traffic is allowed until you add inbound rules to the security group.
• By default, all outbound traffic is allowed until you add outbound rules to the group (and
then, you specify the outbound traffic that’s allowed).

• Responses to allowed inbound traffic are allowed to flow outbound regardless of outbound
rules, and vice versa (security groups are therefore stateful).

• Instances associated with a security group can’t talk to each other unless you add rules
allowing it (exception: the default security group has these rules by default).

• After you launch an instance, you can change which security groups the instance is associated
with.

To create, modify, or delete security groups in a VPC, we’ll use the ec2_group module like the one
we used in Chapter 3. To see the options for this module, please refer to the table in Chapter 3 -
Security Groups section. We need to add the vpc_id option to specify in which VPC we want to
create/modify/delete the security group.

We will create security groups for web servers in public subnet, database servers in private subnet,
and NAT instance in public subnet:

• Webservers security group will allow the web servers to receive Internet traffic (TCP port 80
and 443), SSH (TCP port 22) from your computer’s or network’s public IP address, and allow
MySQL database access (TCP port 3306) to database servers group.

• Database security group will allow the web servers group to access MySQL database, and
allow outbound HTTP and HTTPS access to the Internet.

³⁴http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

Chapter 6: VPC Provisioning with Ansible 68

• NAT security group will allow the NAT instance to receive inbound HTTP and HTTPS traffic
from private subnet, allow SSH from your computer’s or network’s public IP address, and
allow outbound HTTP and HTTPS access to the Internet.

First, we will create a playbook to provision the security groups with empty rules. This playbook
will be useful to remove dependencies from the security groups. Later on, if you want to delete the
security groups run this playbook first to empty the rules, so the deletion won’t produce dependency
error.

$ cd /home/yan/ansible4aws

$ vi sg_empty.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 #your region

9 region: ap-southeast-2

10 #prefix for naming

11 prefix: staging

12 vpc_id: "{{ staging_vpc }}"

13 tasks:

14 - name: create empty security group for webservers

15 ec2_group:

16 region: "{{ region }}"

17 vpc_id: "{{ vpc_id }}"

18 name: "{{ prefix }}_sg_web"

19 description: security group for webservers

20 - name: create empty security group for databases

21 ec2_group:

22 region: "{{ region }}"

23 vpc_id: "{{ vpc_id }}"

24 name: "{{ prefix }}_sg_database"

25 description: security group for databases

26 - name: create empty security group for nat

27 ec2_group:

28 region: "{{ region }}"

29 vpc_id: "{{ vpc_id }}"

30 name: "{{ prefix }}_sg_nat"

31 description: security group for nat

Chapter 6: VPC Provisioning with Ansible 69

Run the playbook:

$ ansible-playbook -i hosts sg_empty.yml

The following security groups should be created in your VPC with empty rules: staging_sg_web,
staging_sg_database, and staging_sg_nat. You can see the security groups on your VPC console
https://console.aws.amazon.com/vpc/, select Security Groups in the navigation pane.

We will modify the rules using another playbook:

$ vi sg_modify.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 #your region

9 region: ap-southeast-2

10 #your ip address

11 allowed_ip: 123.xxx.xxx.xxx/32

12 #prefix for naming

13 prefix: staging

14 vpc_id: "{{ staging_vpc }}"

15 private_subnet: 10.0.1.0/24

16 tasks:

17 - name: modify sg_web rules

18 ec2_group:

19 region: "{{ region }}"

20 vpc_id: "{{ vpc_id }}"

21 #your security group name

22 name: "{{ prefix }}_sg_web"

23 description: security group for webservers

24 rules:

25 # allow ssh access from your ip address

26 - proto: tcp

27 from_port: 22

28 to_port: 22

29 cidr_ip: "{{ allowed_ip }}"

30 # allow http access from anywhere

31 - proto: tcp

32 from_port: 80

33 to_port: 80

Chapter 6: VPC Provisioning with Ansible 70

34 cidr_ip: 0.0.0.0/0

35 # allow https access from anywhere

36 - proto: tcp

37 from_port: 443

38 to_port: 443

39 cidr_ip: 0.0.0.0/0

40 rules_egress:

41 - proto: tcp

42 from_port: 3306

43 to_port: 3306

44 group_name: "{{ prefix }}_sg_database"

45 - name: modify sg_database rules

46 ec2_group:

47 region: "{{ region }}"

48 vpc_id: "{{ vpc_id }}"

49 name: "{{ prefix }}_sg_database"

50 description: security group for databases

51 rules:

52 - proto: tcp

53 from_port: 3306

54 to_port: 3306

55 group_name: "{{ prefix }}_sg_web"

56 rules_egress:

57 - proto: tcp

58 from_port: 80

59 to_port: 80

60 cidr_ip: 0.0.0.0/0

61 - proto: tcp

62 from_port: 443

63 to_port: 443

64 cidr_ip: 0.0.0.0/0

65 - name: modify sg_nat rules

66 ec2_group:

67 region: "{{ region }}"

68 vpc_id: "{{ vpc_id }}"

69 name: "{{ prefix }}_sg_nat"

70 description: security group for nat

71 rules:

72 # allow ssh access from your ip address

73 - proto: tcp

74 from_port: 22

75 to_port: 22

Chapter 6: VPC Provisioning with Ansible 71

76 cidr_ip: "{{ allowed_ip }}"

77 # allow http access from private subnet

78 - proto: tcp

79 from_port: 80

80 to_port: 80

81 cidr_ip: "{{ private_subnet }}"

82 # allow https access from private subnet

83 - proto: tcp

84 from_port: 443

85 to_port: 443

86 cidr_ip: "{{ private_subnet }}"

87 rules_egress:

88 - proto: tcp

89 from_port: 80

90 to_port: 80

91 cidr_ip: 0.0.0.0/0

92 - proto: tcp

93 from_port: 443

94 to_port: 443

95 cidr_ip: 0.0.0.0/0

Run the playbook and you can see the rules changed.

Now from the VPC console, try to delete staging_sg_web. Right click on the security group and
selectDelete Security Group, click Yes, Delete. It will tell you that you could not delete the security
group because it has a dependent object, which is staging_sg_database in its outbound rules.

You could run the sg_empty.yml playbook to remove all rules from the security groups, then you
could delete the security group without dependency issue.

You can use the following playbook to delete the security groups:

$ vi sg_delete.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 #your region

9 region: ap-southeast-2

10 #prefix for naming

11 prefix: staging

Chapter 6: VPC Provisioning with Ansible 72

12 vpc_id: "{{ staging_vpc }}"

13 tasks:

14 - name: delete {{ prefix }}_sg_web

15 ec2_group:

16 region: "{{ region }}"

17 vpc_id: "{{ vpc_id }}"

18 name: "{{ prefix }}_sg_web"

19 description: security group for webservers

20 state: absent

21 - name: delete {{ prefix }}_sg_database

22 ec2_group:

23 region: "{{ region }}"

24 vpc_id: "{{ vpc_id }}"

25 name: "{{ prefix }}_sg_database"

26 description: security group for databases

27 state: absent

28 - name: delete {{ prefix }}_sg_nat

29 ec2_group:

30 region: "{{ region }}"

31 vpc_id: "{{ vpc_id }}"

32 name: "{{ prefix }}_sg_nat"

33 description: security group for nat

34 state: absent

If you run sg_delete.yml playbook without deleting the security groups rules first, it will produce
dependency error. You have to run sg_empty.yml first before deleting the security groups.

Chapter 6: VPC Provisioning with Ansible 73

EC2-VPC Provisioning

In chapter 3 we used Ansible to launch EC2 instances without creating and specifying a non-default
VPC, therefore the instances launched in the default VPC. In this chapter we have created a non-
default VPC, subnets, and VPC security groups. To launch an instance in a particular subnet in your
VPC using the Ansible ec2 module, you need to specify the subnet id using the vpc_subnet_id

option.

The following playbook will launch an EC2 instance for our web server in the public subnet of our
VPC:

$ vi ec2_vpc_web_create.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 region: ap-southeast-2

9 key: yan-key-pair-apsydney

10 instance_type: t2.micro

11 image: ami-d9fe9be3

12 prefix: staging

13 tasks:

14 - name: web instance provisioning

15 ec2:

16 region: "{{ region }}"

17 key_name: "{{ key }}"

18 instance_type: "{{ instance_type }}"

19 image: "{{ image }}"

20 wait: yes

21 group: "{{ prefix }}_sg_web"

22 instance_tags:

23 Name: "{{ prefix }}_web"

24 class: web

25 environment: staging

26 id: web_launch_01

27 vpc_subnet_id: "{{ staging_subnet_public }}"

28 register: ec2

29 - name: associate new EIP for the instance

30 ec2_eip:

Chapter 6: VPC Provisioning with Ansible 74

31 region: "{{ region }}"

32 instance_id: "{{ item.id }}"

33 with_items: ec2.instances

And the following playbookwill launch an EC2 instance for our database server in the private subnet
of our VPC, without assigning a public IP address:

$ vi ec2_vpc_db_create.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 region: ap-southeast-2

9 key: yan-key-pair-apsydney

10 instance_type: t2.micro

11 image: ami-d9fe9be3

12 prefix: staging

13 tasks:

14 - name: database instance provisioning

15 ec2:

16 region: "{{ region }}"

17 key_name: "{{ key }}"

18 instance_type: "{{ instance_type }}"

19 image: "{{ image }}"

20 wait: yes

21 group: "{{ prefix }}_sg_database"

22 instance_tags:

23 Name: "{{ prefix }}_database"

24 class: database

25 environment: staging

26 id: db_launch_01

27 vpc_subnet_id: "{{ staging_subnet_private }}"

28 assign_public_ip: no

Chapter 6: VPC Provisioning with Ansible 75

NAT Instance

Instances that you launch into a private subnet in a VPC can’t communicate with the Internet. You
can optionally use a network address translation (NAT) instance in a public subnet in your VPC to
enable instances in the private subnet to initiate outbound traffic to the Internet, but prevent the
instances from receiving inbound traffic initiated by someone on the Internet. ³⁵

Amazon provides Amazon Linux AMIs that are configured to run as NAT instances. These AMIs
include the string amzn-ami-vpc-nat in their names, so you can search for them in the Amazon EC2
console.

To get the NAT AMI ID:

1. Open the Amazon EC2 console https://console.aws.amazon.com/ec2
2. On the dashboard, click the Launch Instance button.
3. On the Choose an Amazon Machine Image (AMI) page, select the Community AMIs

category, and search for amzn-ami-vpc-nat. In the results list, each AMI’s name includes the
version to enable you to select the most recent AMI, for example, 2013.09.

4. Take a note of the AMI ID.

NAT AMI

This AMI is using paravirtual virtualization so it won’t work with t2.micro instance type. We will
use the t1.micro instance type.

The following playbook will launch a NAT instance in the public subnet of our VPC and associate
an Elastic IP address to the instance.

$ vi nat_launch.yml

³⁵http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html

Chapter 6: VPC Provisioning with Ansible 76

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 region: ap-southeast-2

9 key: yan-key-pair-apsydney

10 instance_type: t1.micro

11 image: ami-3bae3201

12 prefix: staging

13 tasks:

14 - name: NAT instance provisioning

15 ec2:

16 region: "{{ region }}"

17 key_name: "{{ key }}"

18 instance_type: "{{ instance_type }}"

19 image: "{{ image }}"

20 wait: yes

21 group: "{{ prefix }}_sg_nat"

22 instance_tags:

23 Name: "{{ prefix }}_nat"

24 class: nat

25 environment: staging

26 id: nat_launch_01

27 vpc_subnet_id: "{{ staging_subnet_public }}"

28 source_dest_check: no

29 wait: yes

30 register: ec2

31 - name: associate new EIP for the instance

32 tags: eip

33 ec2_eip:

34 region: "{{ region }}"

35 instance_id: "{{ item.id }}"

36 with_items: ec2.instances

37 when: item.id is defined

Run the playbook and check your AWS EC2 console. A new staging_nat instance should be created
in staging_subnet_public subnet and associated with an EIP address.

Each EC2 instance performs source/destination checks by default. This means that the instance must
be the source or destination of any traffic it sends or receives. However, a NAT instance must be able

Chapter 6: VPC Provisioning with Ansible 77

to send and receive traffic when the source or destination is not itself. Therefore, you must disable
source/destination checks on the NAT instance. To do this, in the playbook we set the ec2 module’s
option source_dest_check: no.

To allow instances in private subnet to connect to the Internet via the NAT instance, we must update
the Main route tables. We need to do this from the AWS VPC console:

1. In the VPC console navigation pane select Route tables.
2. Select the Main route table of your staging_vpc VPC and select the Routes tab.

3. Click Edit
4. Enter 0.0.0.0/0 CIDR block in the Destination field and select the staging_nat instance id

from the Target list.

5. Click Save

Chapter 6: VPC Provisioning with Ansible 78

Now we have completed the VPC infrastructure provisioning using Ansible. At the time of writing,
there is not yet a module for Network ACLs provisioning. If you want to add some Network ACLs
for your VPC subnet, you could do it from the VPC console: selectNetwork ACLs in the navigation
pane and then click Create Network ACLs. You can find more information about ACLs here: http:
//docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ACLs.html.

If you have finished with the examples, you can terminate the EC2 instances to avoid any cost.

Chapter 6: VPC Provisioning with Ansible 79

Multi-AZ Deployment

You can span your Amazon VPC across multiple subnets in multiple Availability Zones (AZ) inside
a region. This will create a high availability system, adding redundancy to the system so that failure
of a component does not mean failure of the entire system.

The following diagram shows a Multi-AZ version of our public and private subnets scenario. We’ll
add a public subnet and a private subnet in another availability zone within our region.

Multi-AZ VPC

We will use Ansible to provision our Multi-AZ VPC. First, we need to delete the staging_vpc VPC.
You can use vpc_delete.yml to delete the VPC or you can delete the VPC from your AWS VPC
console. Make sure you have terminated all EC2 instances in the VPC before deleting the VPC.

The following playbook will create a VPC with Multi-AZ subnets.

$ cd /home/yan/ansible4aws

$ vi vpc_create_multi_az.yml

Chapter 6: VPC Provisioning with Ansible 80

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars:

6 region: ap-southeast-2

7 # prefix for naming

8 prefix: staging

9 # availability zones

10 az0: ap-southeast-2a

11 az1: ap-southeast-2b

12 tasks:

13 - name: create vpc with multi-az subnets

14 ec2_vpc:

15 region: "{{ region }}"

16 cidr_block: 10.0.0.0/16

17 resource_tags: '{"Name":"{{ prefix }}_vpc"}'

18 subnets:

19 - cidr: 10.0.0.0/24

20 az: "{{ az0 }}"

21 resource_tags: '{"Name":"{{ prefix }}_subnet_public_0"}'

22 - cidr: 10.0.1.0/24

23 az: "{{ az0 }}"

24 resource_tags: '{"Name":"{{ prefix }}_subnet_private_0"}'

25 - cidr: 10.0.2.0/24

26 az: "{{ az1 }}"

27 resource_tags: '{"Name":"{{ prefix }}_subnet_public_1"}'

28 - cidr: 10.0.3.0/24

29 az: "{{ az1 }}"

30 resource_tags: '{"Name":"{{ prefix }}_subnet_private_1"}'

31 internet_gateway: yes

32 route_tables:

33 - subnets:

34 - 10.0.0.0/24

35 - 10.0.2.0/24

36 routes:

37 - dest: 0.0.0.0/0

38 gw: igw

39 register: vpc

40 - name: write vpc id to {{ prefix }}_vpc_info file

41 shell: echo "{{ prefix }}"_vpc":" "{{ vpc.vpc_id }}"

42 > "{{ prefix }}"_vpc_info

Chapter 6: VPC Provisioning with Ansible 81

43 - name: write subnets id to {{ prefix }}_vpc_info file

44 shell: echo "{{ item.resource_tags.Name }}"":" "{{ item.id }}"

45 >> "{{ prefix }}"_vpc_info

46 with_items: vpc.subnets

After running the playbook, a new VPC will be created, with 2 subnets in ap-southeast-2a

zone, named staging_subnet_private_0 and staging_subnet_public_0, and 2 subnets in ap-

southeast-2b zone, named staging_subnet_private_1 and staging_subnet_public_1.

Run sg_empty.yml playbook, and then sg_modify.yml playbook to re-create our VPC security
groups.

To achieve high availability, you can deploy your web application cluster in 2 (or more) availability
zones (staging_subnet_public_0 and staging_subnet_public_1), and distribute the load using
Amazon Elastic Load Balancing (ELB). For the database tier, you can use Amazon RDS (Relational
Database Service), deployed in 2 (or more) availability zones (staging_subnet_private_0 and
staging_subnet_private_1).

Chapter 6: VPC Provisioning with Ansible 82

Ansible in VPC

Instances in private subnet of a VPC cannot directly receive inbound traffic from the internet.
Therefore you can’t use Ansible from the internet to manage the private server configuration. To
use Ansible to manage configuration of servers in the private subnet of a VPC, we have 2 options:

• Install Ansible in an instance in public subnet of the VPC and allow SSH connection from the
Ansible machine to the hosts to be managed in private subnet. This Ansible machine can also
be used as a jump box to allow SSH access from the internet to hosts in private subnet (SSH to
the Ansible machine first and then use the Ansible machine to SSH to hosts in private subnet).

• Create a VPN (Virtual Private Network) connection between Ansible machine (over the
internet) and the private subnet. We can launch an OpenVPN server (available in AWS
marketplace) instance in the public subnet which will allow Ansible machine to log in using
OpenVPN client and connect via SSH to hosts in the private subnet.

Chapter 6: VPC Provisioning with Ansible 83

We can use our current Ansible machine to launch a jump box instance in the public subnet and
install Ansible on the instance. First, we need to create a new security group for this instance.

The following playbook will create a new security group for the Ansible or jump box instance:

$ cd /home/yan/ansible4aws

$ vi sg_jumpbox.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 #your region

9 region: ap-southeast-2

10 #your ip address

11 allowed_ip: 123.xxx.xxx.xxx/32

12 #prefix for naming

13 prefix: staging

14 vpc_id: "{{ staging_vpc }}"

15 tasks:

Chapter 6: VPC Provisioning with Ansible 84

16 - name: create security group for jump box instance

17 ec2_group:

18 region: "{{ region }}"

19 vpc_id: "{{ vpc_id }}"

20 #your security group name

21 name: "{{ prefix }}_sg_jumpbox"

22 description: security group for jump box

23 rules:

24 # allow ssh access from your ip address

25 - proto: tcp

26 from_port: 22

27 to_port: 22

28 cidr_ip: "{{ allowed_ip }}"

29 rules_egress:

30 - proto: all

31 cidr_ip: 0.0.0.0/0

$ ansible-playbook -i hosts sg_jumpbox.yml

The following playbook will launch our jump box instance in public subnet A:

$ vi ec2_vpc_jumpbox.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 region: ap-southeast-2

9 key: yan-key-pair-apsydney

10 instance_type: t2.micro

11 image: ami-d9fe9be3

12 prefix: staging

13 vpc_subnet_id: "{{ staging_subnet_public_0 }}"

14 tasks:

15 - name: jump box instance provisioning

16 ec2:

17 region: "{{ region }}"

18 key_name: "{{ key }}"

19 instance_type: "{{ instance_type }}"

20 image: "{{ image }}"

Chapter 6: VPC Provisioning with Ansible 85

21 wait: yes

22 group: "{{ prefix }}_sg_jumpbox"

23 instance_tags:

24 Name: "{{ prefix }}_jumpbox"

25 class: jumpbox

26 environment: "{{ prefix }}"

27 id: jumpbox_launch_01

28 vpc_subnet_id: "{{ vpc_subnet_id }}"

29 register: ec2

30 - name: associate new EIP for the instance

31 ec2_eip:

32 region: "{{ region }}"

33 instance_id: "{{ item.id }}"

34 with_items: ec2.instances

Ping the instance, make sure Ansible can connect via SSH to the host:

$ ansible -i ec2.py tag_class_jumpbox -m ping

You might want to disable host key checking in ssh configuration so ssh will automatically
add new host keys to the user known hosts files without asking (the default is “ask”). To
disable host key checking, set StrictHostKeyChecking no in your /etc/ssh/ssh_config
file.

Create roles to install Ansible:

mkdir roles/ansible

mkdir roles/ansible/tasks

$ vi roles/ansible/tasks/main.yml

1 ---

2 - name: upgrade all packages

3 yum: name=* state=latest

4 - name: install the 'Development tools' package group

5 yum: name="@Development tools" state=present

6 - name: install required packages

7 yum: name={{ item }} state=present

8 with_items:

9 - epel-release.noarch

10 - python-pip

11 - python-devel

12 - name: install setuptools

13 pip: name=setuptools extra_args='--upgrade'

Chapter 6: VPC Provisioning with Ansible 86

14 - name: install ansible

15 pip: name=ansible

And the playbook to install Ansible in the jump box instance:

$ vi install_ansible.yml

1 ---

2 - hosts: tag_class_jumpbox

3 become: yes

4 roles:

5 - ansible

$ ansible-playbook -i ec2.py install_ansible.yml

To allow SSH access from this new Ansible machine, do not forget to modify the security group of
hosts you want to manage. For example if you want to install your own MySQL database server
in the private subnet and manage the configuration using Ansible, you can modify the rules in
sg_modify.yml:

- name: modify sg_database rules

ec2_group:

region: "{{ region }}"

vpc_id: "{{ vpc_id }}"

name: "{{ prefix }}_sg_database"

description: security group for databases

rules:

allow ssh from the jump box

- proto: tcp

from_port: 22

to_port: 22

group_name: "{{ prefix }}_sg_jumpbox"

allow mysql access from web servers

- proto: tcp

from_port: 3306

to_port: 3306

group_name: "{{ prefix }}_sg_web"

rules_egress:

- proto: tcp

from_port: 80

to_port: 80

cidr_ip: 0.0.0.0/0

- proto: tcp

Chapter 6: VPC Provisioning with Ansible 87

from_port: 443

to_port: 443

cidr_ip: 0.0.0.0/0

And run the sg_modify.yml playbook to modify security group rules.

Chapter 6: VPC Provisioning with Ansible 88

OpenVPN Server

This section will show you how to launch an OpenVPN EC2 instance in the public subnet using
Ansible, and configure the server from its web UI.

OpenVPN Access Server is a full featured SSL VPN software solution that integrates OpenVPN
server capabilities, enterprise management capabilities, simplified OpenVPNConnect UI, and Open-
VPN Client software packages that accommodate Windows, MAC, and Linux OS environments.
OpenVPN Access Server supports a wide range of configurations, including secure and granular
remote access to internal network and/ or private cloud network resources and applications with
fine-grained access control.³⁶

To launch an OpenVPN instance, first we need to know the AMI ID of the OpenVPN Access Server
AMI for our region.

To get the AMI ID:

1. Go to your EC2 dashboard, select your region, and then click Launch Instance button.
2. On the left hand navigation bar, select Community AMIs.
3. When the AMI selection dialog appears, type OpenVPN in the search box.
4. Locate the latest version of OpenVPN Access Server AMI provided by openvpn.net and note

the AMI ID.

5. Select Cancel and Exit.

Create the security group for our OpenVPN server:

$ vi sg_openvpn.yml

³⁶http://openvpn.net/index.php/access-server/overview.html

Chapter 6: VPC Provisioning with Ansible 89

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 #your region

9 region: ap-southeast-2

10 #your ip address

11 allowed_ip: 123.xxx.xxx.xxx/32

12 #prefix for naming

13 prefix: staging

14 vpc_id: "{{ staging_vpc }}"

15 tasks:

16 - name: create security group for openvpn instance

17 ec2_group:

18 region: "{{ region }}"

19 vpc_id: "{{ vpc_id }}"

20 #your security group name

21 name: "{{ prefix }}_sg_openvpn"

22 description: security group for openvpn

23 rules:

24 - proto: tcp

25 from_port: 22

26 to_port: 22

27 cidr_ip: "{{ allowed_ip }}"

28 - proto: tcp

29 from_port: 443

30 to_port: 443

31 cidr_ip: 0.0.0.0/0

32 - proto: tcp

33 from_port: 943

34 to_port: 943

35 cidr_ip: 0.0.0.0/0

36 - proto: udp

37 from_port: 1194

38 to_port: 1194

39 cidr_ip: 0.0.0.0/0

40 rules_egress:

41 - proto: all

42 cidr_ip: 0.0.0.0/0

Chapter 6: VPC Provisioning with Ansible 90

Run the playbook:

$ ansible-playbook -i hosts sg_openvpn.yml

The following playbook will launch our OpenVPN server instance in public subnet A:

$ vi ec2_vpc_openvpn.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars_files:

6 - staging_vpc_info

7 vars:

8 region: ap-southeast-2

9 key: yan-key-pair-apsydney

10 instance_type: t2.micro

11 image: ami-a17f199b

12 prefix: staging

13 vpc_subnet_id: "{{ staging_subnet_public_0 }}"

14 tasks:

15 - name: openvpn server instance provisioning

16 ec2:

17 region: "{{ region }}"

18 key_name: "{{ key }}"

19 instance_type: "{{ instance_type }}"

20 image: "{{ image }}"

21 source_dest_check: no

22 wait: yes

23 group: "{{ prefix }}_sg_openvpn"

24 instance_tags:

25 Name: "{{ prefix }}_openvpn"

26 class: openvpn

27 environment: "{{ prefix }}"

28 id: openvpn_launch_01

29 vpc_subnet_id: "{{ vpc_subnet_id }}"

30 register: ec2

31 - name: associate new EIP for the instance

32 ec2_eip:

33 region: "{{ region }}"

34 instance_id: "{{ item.id }}"

35 with_items: ec2.instances

Chapter 6: VPC Provisioning with Ansible 91

Configure OpenVPN Server

To configure, SSH to the OpenVPN Access Server as openvpnas user:

ssh -i ∼/.ssh/yan-key-pair-apsydney.pem openvpnas@openvpn-ipaddress

The OpenVPN Access Server Setup Wizard runs automatically upon your initial login to the
appliance. If you would like to run this wizard again in the future, issue the become ovpn-init

--ec2 command in the terminal.

>Please enter 'yes' to indicate your agreement [no]: yes

Will this be the primary Access Server node?

(enter 'no' to configure as a backup or standby node)

> Press ENTER for default [yes]:

Please specify the network interface and IP address to be

used by the Admin Web UI:

(1) all interfaces: 0.0.0.0

(2) eth0: 10.0.0.40

Please enter the option number from the list above (1-2).

> Press Enter for default [2]: 1

Please specify the port number for the Admin Web UI.

> Press ENTER for default [943]:

Please specify the TCP port number for the OpenVPN Daemon

> Press ENTER for default [443]:

Should client traffic be routed by default through the VPN?

> Press ENTER for default [no]:

Should client DNS traffic be routed by default through the VPN?

> Press ENTER for default [no]:

Use local authentication via internal DB?

> Press ENTER for default [yes]:

Private subnets detected: ['10.0.0.0/16']

Should private subnets be accessible to clients by default?

Chapter 6: VPC Provisioning with Ansible 92

> Press ENTER for EC2 default [yes]:

To initially login to the Admin Web UI, you must use a

username and password that successfully authenticates you

with the host UNIX system (you can later modify the settings

so that RADIUS or LDAP is used for authentication instead).

You can login to the Admin Web UI as "openvpn" or specify

a different user account to use for this purpose.

Do you wish to login to the Admin UI as "openvpn"?

> Press ENTER for default [yes]: no

>Specify the username for an existing user or for the new user account: openvpn-\

admin

>Type the password for the 'openvpn-admin' account:

>Confirm the password for the 'openvpn-admin' account:

>Please specify your OpenVPN-AS license key (or leave blank to specify later):

Initializing OpenVPN...

After you complete the setup wizard, you can access the Admin Web UI area to configure other
aspects of your VPN:

1. Go to https://openvpn-ipaddress/admin‘.
2. Go to VPN Settings menu.
3. Configure subnets for the clients. On the Dynamic IP Address network allocate address for

VPN clients, for example 10.1.0.0/23.
Static IP Address Network: (leave empty)
Group Default IP Address Network: (leave empty)

4. Click Save settings.
5. Click Update Running Server.

To add user:

1. Go to User Permissions menu.
2. Add a user name.
3. Click show and set password.
4. Click Update Running Server.

Chapter 6: VPC Provisioning with Ansible 93

Connect Client

The Connect Client can be accessed via a preferred web browser by entering the following address
into the address bar: https://openvpn-ipaddress.

Users have the option to either Connect to the VPN or Login to the Connect Client.When connecting,
the user will be connected to the VPN directly through their web browser. When the user decides
to login to the Connect Client they can download their user configuration files (client.ovpn) and
use them to connect to the VPN with other OpenVPN Clients.

For more information on OpenVPN Access Server go to https://openvpn.net/index.php/access-
server/docs.html.

Chapter 6: VPC Provisioning with Ansible 94

Getting VPC and Subnet ID

One reader told me that it’s horrible to store VPC and subnets ID in a file. Too bad Ansible doesn’t
have a module yet to get the VPC or subnets ID based on particular filter. This following Python
script can be added as Ansible module and called from playbook, to get the VPC or subnet ID based
on resource tags. Of course when you created the VPC or subnets you have to give a spesific tag
for each resource to make this module works. This will also give you an example on how to add
your own Ansible module. The output of this module is in JSON format { vpc_ids: [list of vpc

ids], subnet_ids: [list of subnet ids] }.

The original code can be found here: https://github.com/edx/configuration/blob/master/playbooks/
library/vpc_lookup. I modified some parts of the code to make it work.

Put the following script in library/ directory, relative to your playbook.

$ cd /home/yan/ansible4aws

mkdir library

$ vi library/vpc_lookup

1 #!/usr/bin/python

2

3 #author: John Jarvis

4

5 import sys

6

7 AWS_REGIONS = ['ap-northeast-1',

8 'ap-southeast-1',

9 'ap-southeast-2',

10 'eu-west-1',

11 'sa-east-1',

12 'us-east-1',

13 'us-west-1',

14 'us-west-2']

15

16 try:

17 from boto.vpc import VPCConnection

18 from boto.vpc import connect_to_region

19 except ImportError:

20 print "failed=True msg='boto required for this module'"

21 sys.exit(1)

22

23 def main():

24

25 module=AnsibleModule(

Chapter 6: VPC Provisioning with Ansible 95

26 argument_spec=dict(

27 region=dict(choices=AWS_REGIONS),

28 aws_secret_key=dict(aliases=['ec2_secret_key', 'secret_key'],

29 no_log=True),

30 aws_access_key=dict(aliases=['ec2_access_key', 'access_key']),

31 tags=dict(default=None, type='dict'),

32)

33)

34

35 tags = module.params.get('tags')

36 aws_secret_key = module.params.get('aws_secret_key')

37 aws_access_key = module.params.get('aws_access_key')

38 region = module.params.get('region')

39

40 # If we have a region specified, connect to its endpoint.

41 if region:

42 try:

43 vpc = connect_to_region(region, aws_access_key_id=aws_access_key,

44 aws_secret_access_key=aws_secret_key)

45 except boto.exception.NoAuthHandlerFound, e:

46 module.fail_json(msg=str(e))

47 else:

48 module.fail_json(msg="region must be specified")

49

50 subnet_ids = []

51 for tag, value in tags.iteritems():

52 for subnet in vpc.get_all_subnets(filters={"tag:" + tag: value}):

53 subnet_ids.append(subnet.id)

54

55 vpc_ids = []

56 for tag, value in tags.iteritems():

57 for vpc in vpc.get_all_vpcs(filters={"tag:" + tag: value}):

58 vpc_ids.append(vpc.id)

59

60 module.exit_json(changed=False, vpc_ids=vpc_ids, subnet_ids=subnet_ids)

61

62

63 # this is magic, see lib/ansible/module_common.py

64 #<<INCLUDE_ANSIBLE_MODULE_COMMON>>

65

66 main()

chmod 755 library/vpc_lookup

Chapter 6: VPC Provisioning with Ansible 96

The following playbook will show you how to use this additional module. This example playbook
will get the ID of VPC with resource tags “Name=test-vpc” (if exists) and delete the VPC.

$ vi vpc_delete.yml

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5 vars:

6 region: ap-southeast-2

7 tasks:

8 - name: get vpc id

9 vpc_lookup:

10 region: "{{ region }}"

11 tags:

12 Name: test-vpc

13 register: vpc

14

15 - name: delete vpc

16 ec2_vpc:

17 region: "{{ region }}"

18 state: absent

19 vpc_id: "{{ item }}"

20 wait: yes

21 with_items: vpc.vpc_ids

You can use the same module to get subnet id based on resource tags, the JSON output used is
subnet_ids.

You can also use Ansible extra modules called ec2_vpc_net_facts and ec2_vpc_-

subnet_facts (added in version 2.1) to gather VPC and subnet facts. For more infor-
mation, go to http://docs.ansible.com/ansible/ec2_vpc_net_facts_module.html and http:
//docs.ansible.com/ansible/ec2_vpc_subnet_facts_module.html.

	Table of Contents
	Preface
	What this book covers
	Who this book is for
	What you need for this book
	Conventions
	Example Code Files

	Chapter 1: Getting Started with AWS
	What is Amazon Web Services (AWS)?
	Setting Up Your AWS Account
	AWS Management Console
	Create Your First EC2 Instance
	Connect to Your Instance
	Terminate Your Instance

	Chapter 2: Getting Started with Ansible
	What You'll Need
	Installing Ansible
	SSH Keys
	Inventory
	Your First Commands
	Playbooks
	Your First Playbook
	Roles and Include Statements

	Chapter 6: VPC Provisioning with Ansible
	The Default VPC
	Getting Started with VPC
	VPC Provisioning
	VPC Security Groups
	EC2-VPC Provisioning
	NAT Instance
	Multi-AZ Deployment
	Ansible in VPC
	OpenVPN Server
	Getting VPC and Subnet ID

